文書クラスタリングの技法―文献レビューTechniques of document clustering: A review
駿河台大学文化情報学部Surugadai University ◇ 〒357-0046 埼玉県飯能市阿須698番地 ◇ Azu 698, Hanno, Saitama 357-8555, Japan
駿河台大学文化情報学部Surugadai University ◇ 〒357-0046 埼玉県飯能市阿須698番地 ◇ Azu 698, Hanno, Saitama 357-8555, Japan
The document clustering technique is widely recognized as a useful tool for information retrieval, organizing web documents, text mining and so on. The purpose of this paper is to review various document clustering techniques, and to discuss research issues for enhancing effectiveness or efficiency of the clustering methods. We explore extensive literature on non-hierarchical methods (single-pass methods), hierarchical methods (single-link, complete-link, etc.), dimensional reduction methods (LSI, principal component analysis, etc.), probabilistic methods, data mining techniques, and so on. In particular, this paper focuses on typical techniques, such as the k-means algorithm, the leader-follower algorithm, self-organizing map (SOM), single- or complete-link methods, bisecting k-means methods, latent semantic indexing (LSI), Gaussian-Mixture model and so on. After reviewing the techniques and algorithms, we discuss research issues on document clustering; computational complexity, feature extraction (selection of words), methods for defining term weights and similarity, and evaluation of results.
© 2003 三田図書館・情報学会© 2003 Mita Society for Library and Information Science
This page was created on 2021-01-18T17:41:10.82+09:00
This page was last modified on
このサイトは(株)国際文献社によって運用されています。